metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -iodido-bis[(diethyl ether- κ O)-(η^5 -1,3-di-*tert*-butylcyclopentadienyl)ytterbium(II)]

Madeleine Schultz

School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia Correspondence e-mail: madeleine.schultz@qut.edu.au

Received 30 November 2007; accepted 14 December 2007

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.010 Å; R factor = 0.026; wR factor = 0.059; data-to-parameter ratio = 16.2.

The half-sandwich title compound, $[Yb_2(C_{13}H_{21})_2I_2(C_4H_{10}O)_2]$, crystallizes as a centrosymmetric dimer. The Yb atom is coordinated in a three-legged piano-stool geometry by a cyclopentadienyl ring, two I anions and the O atom of a diethyl ether molecule. The central Yb_2I_2 core is an approximate square.

Related literature

For related structures, see: Constantine *et al.* (1996); Trifonov *et al.* (2003). For related chemistry, see: Schultz *et al.* (2000); Schumann *et al.* (1993).

Experimental

Crystal data

 $[Yb_{2}(C_{13}H_{21})_{2}I_{2}(C_{4}H_{10}O)_{2}]$ $M_{r} = 1102.72$ Monoclinic, $P2_{1}/n$ a = 13.7190 (3) Å b = 11.1690 (1) Å c = 14.4440 (3) Å $\beta = 112.800$ (1)°

Data collection

Bruker SMART 1K CCD diffractometer V = 2040.28 (6) Å³ Z = 2Mo K α radiation $\mu = 6.10 \text{ mm}^{-1}$ T = 160 K $0.40 \times 0.30 \times 0.15 \text{ mm}$

Absorption correction: multi-scan (XPREP; Sheldrick, 1995) $T_{\min} = 0.192, T_{\max} = 0.401$ 8321 measured reflections 2928 independent reflections 2679 reflections with $I > 2\sigma(I)$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.026 & 181 \text{ parameters} \\ wR(F^2) &= 0.059 & \text{H-atom parameters constrained} \\ S &= 1.09 & \Delta\rho_{\text{max}} &= 0.92 \text{ e } \text{\AA}^{-3} \\ 2928 \text{ reflections} & \Delta\rho_{\text{min}} &= -1.11 \text{ e } \text{\AA}^{-3} \end{split}$$

 $R_{\rm int} = 0.033$

 $\theta_{\rm max} = 23.3^{\circ}$

Table 1

Selected geometric parameters (Å, °).

Cp is the calculated centroid of atoms C1-C5.

Yb1-Cp	2.37	Yb1-I1	3.0848 (4)
Yb1-O1	2.387 (5)	Yb1-I1 ⁱ	3.0961 (5)
I1-Yb1-Cp	127	O1-Yb1-I1 ¹	97.98 (13)
O1-Yb1-Cp	124	$I1 - Yb1 - I1^i$	88.78 (1)
I1-Yb1-Cp ¹	115	Yb1-I1-Yb1 ⁱ	91.22 (1)
O1-Yb1-I1	96.34 (11)		

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 1998); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under contract No. DE-AC03-76SF00098. The author thanks Dr Frederick J. Hollander (at CHEXRAY, the University of California at Berkeley X-ray diffraction facility) for assistance with the crystallography, and Professor Richard A. Andersen.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2232).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Constantine, S. P., De Lima, G. M., Hitchcock, P. B., Keates, J. M. & Lawless, G. A. (1996). Chem. Commun. pp. 2421–2422.
- Schultz, M., Burns, C. J., Schwartz, D. J. & Andersen, R. A. (2000). Organometallics, 19, 781–789.
- Schumann, H., Winterfeld, J., Hemling, H. & Kuhn, N. (1993). Chem. Ber. 126, 2657–2659.
- Sheldrick, G. M. (1995). XPREP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Trifonov, A. T., Spaniol, T. P. & Okuda, J. (2003). Eur. J. Inorg. Chem. pp. 926– 935.

Acta Cryst. (2008). E64, m232 [doi:10.1107/S1600536807066871]

Di- μ -iodido-bis[(diethyl ether- κO)(η^5 -1,3-di-*tert*-butylcyclopentadienyl)ytterbium(II)]

M. Schultz

Comment

The title compound (I) was formed in an attempt to prepare the metallocene of the substituted cyclopentadienyl ligand by stirring one equivalent of the magnesocene (η^5 -1,3-(Me₃C)₂C₅H₃)₂Mg with YbI₂ in diethyl ether. The reaction can also be performed using half an equivalent of magnesocene. The initial yellow-green slurry forms a deep green solution after stirring for two hours at room temperature. The green color has previously been associated with formation of an ytterbocene. However, upon filtration a thermochroic solution results that is bright-green below -30°C but becomes orange-brown upon warming to room temperature. The bright-orange crystals that form at low temperature do not redissolve in diethyl ether and are insoluble in hydrocarbon solvents. Use of THF as solvent for the reaction leads to transfer of two cyclopentadienide rings to the metal and formation of the known THF adduct [1,3-(Me₃C)₂C₅H₃]₂Yb(THF) (Schumann *et al.*, 1993).

The structure of (I) is centrosymmetric about a square Yb_2I_2 core, Fig. 1 & Table 1. There is gross thermal motion in one ethyl group of the diethyl ether ligand, affecting the thermal parameters of C(14) in particular, but this does not adversely impact the quality of the core of the structure. The distances and angles fall within normal ranges for Yb(II) in 6-coordination. (Schultz *et al.*, 2000)

The structure is similar to those of the published dimers $\{(Me_5C_5)Yb(THF)_2-\mu-I\}_2$, $\{(Me_5C_5)Yb(dme)-\mu-I\}_2$, (Constantine*et al.*, 1996) and $\{[Me_4[SiMe_2NH(CMe_3)]C_5]Yb(THF)_2-\mu-I\}_2$ (Trifonov *et al.*, 2003), in which the Yb(II) is 7-co-ordinate.

Experimental

The magnesocene $[1,3-(Me_3C)_2C_5H_3]_2Mg$ (0.5 g, 1.3 mmol) was weighed into a round-bottomed flask equipped with a magnetic stirrer bar. YbI₂ (0.56 g, 1.3 mmol) was added under a flow of N₂. Et₂O was added and the slurry was stirred at room temperature. After 1 h, the solution was green in color. After 3 h, the solution was filtered off the grey solid which appeared to contain unreacted magnesocene by ¹H NMR spectroscopy. The volume of the green solution was reduced under reduced pressure; the solid that was deposited on the sides of the flask during this procedure was orange. Cooling to -40°C resulted in the formation of clear orange crystals which were insoluble in OEt₂, hot toluene or C₆D₆. The crystals turn brown at 130°C, and black at 230°C, but do not melt to 330°C. Analysis. Found: C 38.2, H 5.96%. C₁₇H₃₁IOYb requires C 37.0, H 5.67%. The insolubility of the dimer prevented recrystallization or the obtention of an NMR spectrum. Sublimation of the dimer did not lead to the formation of the ytterbocene. The ether adduct of magnesium iodide can be obtained as a first crop of colorless crystals from the mother liquor before crystallization of the orange product, and unreacted [1,3-(Me₃C)₂C₅H₃]₂Mg can be crystallized from the mother liquor after all of the product has crystallized from the solution.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl-H atoms and $U_{iso}(H) = 1.2 U_{eq}(C)$ for other atoms. The maximum and minimum residual electron density peaks of 0.92 and -1.11 e Å⁻³ were located 0.94 and 0.94 Å, respectively from the H15A and Yb atoms.

Figures

Fig. 1. A view of the dimer (I) showing the atom labelling scheme. Hydrogen atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. Symmetry operation i: -x + 2, -y + 1, -z + 1.

$Di-\mu-iodido-bis[(diethyl \ ether-\kappa O)(\eta^5-1,3-di-tert-butylcyclopentadienyl)ytterbium(II)]$

Crystal data	
$[Yb_2(C_{13}H_{21})_2I_2(C_4H_{10}O)_2]$	$F_{000} = 1056$
$M_r = 1102.72$	$D_{\rm x} = 1.795 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 330 K
Hall symbol: -P 2yn	Mo K α radiation $\lambda = 0.71073$ Å
a = 13.7190 (3) Å	Cell parameters from 6017 reflections
b = 11.1690(1) Å	$\theta = 2.0 - 23.3^{\circ}$
c = 14.4440 (3) Å	$\mu = 6.10 \text{ mm}^{-1}$
$\beta = 112.800 \ (1)^{\circ}$	T = 160 K
V = 2040.28 (6) Å ³	Plate-like, orange
Z = 2	$0.40 \times 0.30 \times 0.15 \text{ mm}$

Data collection

Bruker SMART 1K CCD diffractometer	2928 independent reflections
Radiation source: fine-focus sealed tube	2679 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 161(2) K	$\theta_{\text{max}} = 23.3^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (XPREP; Sheldrick, 1995)	$h = -15 \rightarrow 15$
$T_{\min} = 0.192, \ T_{\max} = 0.401$	$k = -12 \rightarrow 7$
8321 measured reflections	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.059$	$w = 1/[\sigma^2(F_o^2) + (0.0144P)^2 + 9.3362P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
2928 reflections	$\Delta \rho_{max} = 0.92 \text{ e } \text{\AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Yb1	0.848794 (19)	0.48479 (2)	0.519907 (18)	0.02631 (9)
I1	0.92348 (3)	0.43514 (4)	0.34774 (3)	0.03074 (12)
01	0.7760 (4)	0.6781 (4)	0.4630 (3)	0.0524 (13)
C1	0.6879 (4)	0.3797 (5)	0.5476 (4)	0.0257 (13)
H1	0.6204	0.4075	0.5090	0.031*
C2	0.7543 (4)	0.4259 (5)	0.6424 (4)	0.0262 (13)
C3	0.8486 (4)	0.3596 (5)	0.6738 (4)	0.0231 (12)
Н3	0.9067	0.3707	0.7336	0.028*
C4	0.8410 (4)	0.2731 (5)	0.5998 (4)	0.0238 (12)
H4	0.8931	0.2183	0.6027	0.029*
C5	0.7402 (4)	0.2844 (5)	0.5203 (4)	0.0240 (12)
C6	0.6922 (5)	0.2019 (5)	0.4301 (4)	0.0310 (14)
C7	0.6089 (5)	0.1221 (6)	0.4471 (5)	0.0444 (17)
H7A	0.5548	0.1715	0.4538	0.067*
H7B	0.6421	0.0758	0.5072	0.067*
H7C	0.5779	0.0692	0.3909	0.067*
C8	0.7764 (5)	0.1225 (6)	0.4175 (5)	0.0416 (16)
H8A	0.7437	0.0681	0.3627	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H8B	0.8119	0.0780	0.4781	0.062*
H8C	0.8267	0.1714	0.4037	0.062*
C9	0.6382 (5)	0.2726 (6)	0.3338 (4)	0.0351 (15)
H9A	0.6895	0.3210	0.3211	0.053*
H9B	0.5848	0.3232	0.3406	0.053*
Н9С	0.6061	0.2183	0.2788	0.053*
C10	0.7263 (5)	0.5216 (5)	0.7035 (4)	0.0314 (14)
C11	0.6980 (7)	0.4584 (7)	0.7850 (6)	0.058 (2)
H11A	0.6863	0.5174	0.8280	0.088*
H11B	0.7551	0.4069	0.8242	0.088*
H11C	0.6350	0.4117	0.7536	0.088*
C12	0.8200 (5)	0.6051 (6)	0.7574 (5)	0.0460 (17)
H12A	0.8400	0.6453	0.7087	0.069*
H12B	0.8787	0.5589	0.8015	0.069*
H12C	0.8001	0.6631	0.7958	0.069*
C13	0.6325 (6)	0.5959 (8)	0.6373 (6)	0.063 (2)
H13A	0.6493	0.6345	0.5860	0.095*
H13B	0.6166	0.6553	0.6774	0.095*
H13C	0.5722	0.5447	0.6067	0.095*
C14	0.6291 (11)	0.6154 (14)	0.3336 (11)	0.168 (8)
H14A	0.5707	0.6418	0.2749	0.251*
H14B	0.6030	0.5790	0.3797	0.251*
H14C	0.6701	0.5580	0.3145	0.251*
C15	0.6885 (9)	0.7070 (13)	0.3767 (9)	0.117 (4)
H15A	0.6459	0.7653	0.3939	0.140*
H15B	0.7129	0.7443	0.3289	0.140*
C16	0.8367 (7)	0.7862 (7)	0.5083 (6)	0.061 (2)
H16A	0.8818	0.7693	0.5776	0.073*
H16B	0.7880	0.8491	0.5083	0.073*
C17	0.9034 (7)	0.8298 (8)	0.4551 (7)	0.075 (3)
H17A	0.9409	0.9003	0.4879	0.112*
H17B	0.8592	0.8485	0.3868	0.112*
H17C	0.9530	0.7687	0.4562	0.112*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Yb1	0.02713 (15)	0.02691 (15)	0.02587 (15)	-0.00026 (11)	0.01133 (11)	0.00181 (11)
I1	0.0296 (2)	0.0388 (2)	0.0227 (2)	-0.00659 (17)	0.00885 (16)	-0.00354 (17)
01	0.058 (3)	0.056 (3)	0.045 (3)	0.023 (3)	0.021 (2)	0.022 (3)
C1	0.019 (3)	0.033 (3)	0.021 (3)	0.002 (3)	0.004 (2)	0.002 (3)
C2	0.029 (3)	0.025 (3)	0.025 (3)	0.000 (3)	0.011 (3)	0.001 (3)
C3	0.025 (3)	0.025 (3)	0.017 (3)	-0.002 (2)	0.006 (2)	0.003 (2)
C4	0.023 (3)	0.024 (3)	0.024 (3)	0.000 (2)	0.009 (2)	0.002 (2)
C5	0.024 (3)	0.025 (3)	0.025 (3)	-0.002 (2)	0.011 (2)	-0.001 (2)
C6	0.035 (3)	0.028 (3)	0.025 (3)	-0.008 (3)	0.006 (3)	-0.005 (3)
C7	0.051 (4)	0.047 (4)	0.031 (3)	-0.021 (3)	0.010 (3)	-0.004 (3)
C8	0.047 (4)	0.034 (4)	0.039 (4)	0.000 (3)	0.012 (3)	-0.014 (3)

C9	0.036 (3)	0.042 (4)	0.024 (3)	-0.009 (3)	0.007 (3)	-0.005 (3)
C10	0.034 (3)	0.034 (3)	0.031 (3)	0.006 (3)	0.018 (3)	0.000 (3)
C11	0.090 (6)	0.046 (4)	0.067 (5)	-0.012 (4)	0.060 (5)	-0.010 (4)
C12	0.049 (4)	0.044 (4)	0.049 (4)	-0.013 (4)	0.023 (3)	-0.016 (3)
C13	0.057 (5)	0.071 (6)	0.056 (5)	0.035 (4)	0.015 (4)	-0.013 (4)
C14	0.122 (11)	0.171 (15)	0.141 (12)	-0.067 (11)	-0.024 (9)	0.081 (12)
C15	0.087 (8)	0.138 (12)	0.091 (8)	0.016 (8)	-0.004 (7)	0.041 (8)
C16	0.090 (6)	0.036 (4)	0.072 (5)	0.020 (4)	0.047 (5)	0.009 (4)
C17	0.087 (6)	0.065 (6)	0.096 (7)	0.017 (5)	0.060 (6)	0.014 (5)
Geometric p	arameters (Å, °)					
Yb1—Cp		2.37	C8—	-H8B	0.9	0600
Yb1—O1		2.387 (5)	C8—	-H8C	0.9	9600
Yb1—C3		2.627 (5)	C9–	-H9A	0.9	0600
Yh1—C2		2.627(5)	C9-	-H9B	0.9	0600
Yb1 - C4		2.650 (5)	C9-	-H9C	0.9	9600 2600
Vb1-C1		2.663 (5)	C10-		1.5	(9)
Vb1		2.600 (5)	C10	C12	1.5	(1) (0)
Vb1_U		2.090(3)	C10-		1.5	() () ()
V_{b1} $I1^{i}$		3 0961 (5)	C11-		0.9)47 (<i>)</i>)
101-11		3.0961 (5)	C11-	H11B	0.9	0600
11 - 101		3.0001(3)	C11		0.5	000
01-015		1.393 (10)	C11-	-HIIC	0.9	600
01-016		1.469 (9)	C12-	HI2A	0.9	600
CI—C2		1.416 (8)	C12-	-H12B	0.9	600
C1—C5		1.422 (8)	C12-	—H12C	0.9	9600
C1—H1		0.9300	C13-	—H13A	0.9	9600
C2—C3		1.405 (8)	C13-	—H13B	0.9	0600
C2—C10		1.526 (8)	C13-	—H13C	0.9	0600
C3—C4		1.413 (7)	C14-	C15	1.3	606 (16)
С3—Н3		0.9300	C14-	—H14A	0.9	9600
C4—C5		1.419 (7)	C14-	—H14B	0.9	9600
C4—H4		0.9300	C14-	—H14C	0.9	9600
C5—C6		1.522 (8)	C15-	—H15A	0.9	700
С6—С9		1.519 (8)	C15-	—H15B	0.9	700
C6—C8		1.521 (8)	C16-	—C17	1.4	86 (10)
C6—C7		1.543 (8)	C16-	—H16A	0.9	0700
С7—Н7А		0.9600	C16-	—H16B	0.9	0700
С7—Н7В		0.9600	C17-	—H17A	0.9	0600
С7—Н7С		0.9600	C17-	—H17B	0.9	9600
C8—H8A		0.9600	C17-	—H17C	0.9	9600
I1—Yb1—Cr)	127	C8—	-C6—C7	10	9.0 (5)
01—Yb1—C	Ċp	124	C5—	-C6C7	10	8.3 (5)
I1—Yb1—Cr	o ⁱ	115	С6—	-С7—Н7А	10	9.5
01—Yb1—C	23	129.45 (16)	С6—	-С7—Н7В	10	9.5
01—Yb1—C	22	101.92 (16)	H7A	—С7—Н7В	10	9.5
C3—Yb1—C	2	30.87 (17)	C6—	-С7—Н7С	10	9.5
01—Yb1—C	24	150.96 (16)	H7A	—С7—Н7С	10	9.5
-						

C3—Yb1—C4	31.06 (16)	H7B—C7—H7C	109.5
C2—Yb1—C4	51.34 (17)	С6—С8—Н8А	109.5
O1—Yb1—C1	100.94 (17)	C6—C8—H8B	109.5
C3—Yb1—C1	50.62 (17)	H8A—C8—H8B	109.5
C2—Yb1—C1	30.92 (17)	C6—C8—H8C	109.5
C4—Yb1—C1	50.65 (17)	H8A—C8—H8C	109.5
O1—Yb1—C5	126.52 (17)	H8B—C8—H8C	109.5
C3—Yb1—C5	51.15 (17)	С6—С9—Н9А	109.5
C2—Yb1—C5	51.49 (17)	С6—С9—Н9В	109.5
C4—Yb1—C5	30.81 (16)	Н9А—С9—Н9В	109.5
C1—Yb1—C5	30.80 (16)	С6—С9—Н9С	109.5
O1—Yb1—I1	96.34 (11)	Н9А—С9—Н9С	109.5
C3—Yb1—I1	134.10 (12)	Н9В—С9—Н9С	109.5
C2—Yb1—I1	153.51 (12)	C13—C10—C2	111.1 (5)
C4—Yb1—I1	105.83 (12)	C13—C10—C12	109.1 (6)
C1—Yb1—I1	126.53 (12)	C2-C10-C12	111.7 (5)
C5—Yb1—I1	102.10 (11)	C13—C10—C11	109.1 (6)
O1—Yb1—I1 ⁱ	97.98 (13)	C2-C10-C11	108.3 (5)
C3—Yb1—I1 ⁱ	87.89 (12)	C12—C10—C11	107.4 (5)
C2—Yb1—I1 ⁱ	107.27 (12)	C10-C11-H11A	109.5
C4—Yb1—I1 ⁱ	100.96 (11)	C10-C11-H11B	109.5
C1—Yb1—I1 ⁱ	136.99 (11)	H11A—C11—H11B	109.5
C5—Yb1—I1 ⁱ	131.77 (12)	C10—C11—H11C	109.5
I1—Yb1—I1 ⁱ	88.782 (12)	H11A—C11—H11C	109.5
Yb1—I1—Yb1 ⁱ	91.218 (11)	H11B—C11—H11C	109.5
C15—O1—C16	110.6 (8)	C10-C12-H12A	109.5
C15—O1—Yb1	128.2 (7)	C10-C12-H12B	109.5
C16—O1—Yb1	120.1 (4)	H12A—C12—H12B	109.5
C2—C1—C5	109.7 (5)	C10-C12-H12C	109.5
C2—C1—Yb1	74.0 (3)	H12A—C12—H12C	109.5
C5—C1—Yb1	75.6 (3)	H12B—C12—H12C	109.5
C2—C1—H1	125.2	C10-C13-H13A	109.5
С5—С1—Н1	125.2	C10-C13-H13B	109.5
Yb1—C1—H1	117.0	H13A—C13—H13B	109.5
C3—C2—C1	106.6 (5)	C10—C13—H13C	109.5
C3—C2—C10	126.1 (5)	H13A—C13—H13C	109.5
C1—C2—C10	127.1 (5)	H13B—C13—H13C	109.5
C3—C2—Yb1	73.7 (3)	C15—C14—H14A	109.5
C1—C2—Yb1	75.1 (3)	C15-C14-H14B	109.5
C10—C2—Yb1	120.7 (4)	H14A—C14—H14B	109.5
C2—C3—C4	109.1 (5)	C15—C14—H14C	109.5
C2—C3—Yb1	75.5 (3)	H14A—C14—H14C	109.5
C4—C3—Yb1	75.4 (3)	H14B—C14—H14C	109.5
С2—С3—Н3	125.4	C14—C15—O1	114.0 (11)
С4—С3—Н3	125.4	C14—C15—H15A	108.7
Yb1—C3—H3	115.7	O1—C15—H15A	108.7
C3—C4—C5	108.3 (5)	C14—C15—H15B	108.7

C3—C4—Yb1	73.5 (3)	O1—C15—H15B	108.7
C5—C4—Yb1	76.1 (3)	H15A—C15—H15B	107.6
C3—C4—H4	125.8	O1—C16—C17	113.3 (6)
С5—С4—Н4	125.8	O1—C16—H16A	108.9
Yb1—C4—H4	116.6	C17—C16—H16A	108.9
C4—C5—C1	106.3 (5)	O1—C16—H16B	108.9
C4—C5—C6	127.0 (5)	C17—C16—H16B	108.9
C1—C5—C6	126.4 (5)	H16A—C16—H16B	107.7
C4—C5—Yb1	73.1 (3)	C16—C17—H17A	109.5
C1-C5-Yb1	73.6 (3)	C16—C17—H17B	109.5
C6—C5—Yb1	123.9 (3)	H17A—C17—H17B	109.5
С9—С6—С8	108.5 (5)	C16—C17—H17C	109.5
C9—C6—C5	111.4 (5)	H17A—C17—H17C	109.5
C8—C6—C5	111.0 (5)	H17B—C17—H17C	109.5
С9—С6—С7	108.5 (5)		

Symmetry codes: (i) -x+2, -y+1, -z+1.

